Augmented package.
Modules:
- 
          base–Base classes for the augmented step. 
- 
          cohere–Classes for augmentation with Cohere embeddings. 
- 
          db–Rago DB package. 
- 
          fireworks–Classes for augmentation with Fireworks embeddings. 
- 
          openai–Classes for augmentation with OpenAI embeddings. 
- 
          sentence_transformer–Classes for augmentation with hugging face. 
- 
          spacy–Classes for augmentation with SpaCy embeddings. 
- 
          together–Classes for augmentation with Together embeddings. 
Classes:
- 
          AugmentedBase–Define the base structure for Augmented classes. 
- 
          CohereAug–Class for augmentation with Cohere embeddings. 
- 
          FireworksAug–Class for augmentation with Fireworks embeddings. 
- 
          OpenAIAug–Class for augmentation with OpenAI embeddings. 
- 
          SentenceTransformerAug–Class for augmentation with Hugging Face. 
- 
          SpaCyAug–Class for augmentation with SpaCy embeddings. 
- 
          TogetherAug–Class for augmentation with Together embeddings. 
AugmentedBase(
    model_name: Optional[str] = None,
    db: DBBase = FaissDB(),
    top_k: Optional[int] = None,
    api_key: str = '',
    cache: Optional[Cache] = None,
    logs: dict[str, Any] = DEFAULT_LOGS,
)
              Bases: RagoBase
Define the base structure for Augmented classes.
Methods:
- 
            get_embedding–Retrieve the embedding for a given text using OpenAI API. 
- 
            search–Search an encoded query into vector database. 
Source code in src/rago/augmented/base.py
                    | 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 |  | 
    Retrieve the embedding for a given text using OpenAI API.
Source code in src/rago/augmented/base.py
              | 76 77 78 |  | 
abstractmethod
  
    Search an encoded query into vector database.
Source code in src/rago/augmented/base.py
              | 80 81 82 83 84 85 86 87 88 |  | 
CohereAug(
    model_name: Optional[str] = None,
    db: DBBase = FaissDB(),
    top_k: Optional[int] = None,
    api_key: str = '',
    cache: Optional[Cache] = None,
    logs: dict[str, Any] = DEFAULT_LOGS,
)
              Bases: AugmentedBase
Class for augmentation with Cohere embeddings.
Methods:
- 
            get_embedding–Retrieve the embedding for given texts using Cohere API. 
- 
            search–Search an encoded query into vector database. 
Source code in src/rago/augmented/base.py
                    | 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 |  | 
    Retrieve the embedding for given texts using Cohere API.
Source code in src/rago/augmented/cohere.py
              | 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 |  | 
    Search an encoded query into vector database.
Source code in src/rago/augmented/cohere.py
              | 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 |  | 
FireworksAug(
    model_name: Optional[str] = None,
    db: DBBase = FaissDB(),
    top_k: Optional[int] = None,
    api_key: str = '',
    cache: Optional[Cache] = None,
    logs: dict[str, Any] = DEFAULT_LOGS,
)
              Bases: AugmentedBase
Class for augmentation with Fireworks embeddings.
Methods:
- 
            get_embedding–Retrieve the embedding for given texts using the OpenAI client. 
- 
            search–Search an encoded query into vector database. 
Source code in src/rago/augmented/base.py
                    | 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 |  | 
    Retrieve the embedding for given texts using the OpenAI client.
Source code in src/rago/augmented/fireworks.py
              | 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 |  | 
    Search an encoded query into vector database.
Source code in src/rago/augmented/fireworks.py
              | 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 |  | 
OpenAIAug(
    model_name: Optional[str] = None,
    db: DBBase = FaissDB(),
    top_k: Optional[int] = None,
    api_key: str = '',
    cache: Optional[Cache] = None,
    logs: dict[str, Any] = DEFAULT_LOGS,
)
              Bases: AugmentedBase
Class for augmentation with OpenAI embeddings.
Methods:
- 
            get_embedding–Retrieve the embedding for a given text using OpenAI API. 
- 
            search–Search an encoded query into vector database. 
Source code in src/rago/augmented/base.py
                    | 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 |  | 
    Retrieve the embedding for a given text using OpenAI API.
Source code in src/rago/augmented/openai.py
              | 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 |  | 
    Search an encoded query into vector database.
Source code in src/rago/augmented/openai.py
              | 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 |  | 
SentenceTransformerAug(
    model_name: Optional[str] = None,
    db: DBBase = FaissDB(),
    top_k: Optional[int] = None,
    api_key: str = '',
    cache: Optional[Cache] = None,
    logs: dict[str, Any] = DEFAULT_LOGS,
)
              Bases: AugmentedBase
Class for augmentation with Hugging Face.
Methods:
- 
            get_embedding–Retrieve the embedding for a given text using OpenAI API. 
- 
            search–Search an encoded query into vector database. 
Source code in src/rago/augmented/base.py
                    | 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 |  | 
    Retrieve the embedding for a given text using OpenAI API.
Source code in src/rago/augmented/sentence_transformer.py
              | 38 39 40 41 |  | 
    Search an encoded query into vector database.
Source code in src/rago/augmented/sentence_transformer.py
              | 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 |  | 
SpaCyAug(
    model_name: Optional[str] = None,
    db: DBBase = FaissDB(),
    top_k: Optional[int] = None,
    api_key: str = '',
    cache: Optional[Cache] = None,
    logs: dict[str, Any] = DEFAULT_LOGS,
)
              Bases: AugmentedBase
Class for augmentation with SpaCy embeddings.
Methods:
- 
            get_embedding–Retrieve the embedding for a given text using SpaCy. 
- 
            search–Search an encoded query into vector database. 
Source code in src/rago/augmented/base.py
                    | 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 |  | 
    Retrieve the embedding for a given text using SpaCy.
Source code in src/rago/augmented/spacy.py
              | 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 |  | 
    Search an encoded query into vector database.
Source code in src/rago/augmented/spacy.py
              | 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 |  | 
TogetherAug(
    model_name: Optional[str] = None,
    db: DBBase = FaissDB(),
    top_k: Optional[int] = None,
    api_key: str = '',
    cache: Optional[Cache] = None,
    logs: dict[str, Any] = DEFAULT_LOGS,
)
              Bases: AugmentedBase
Class for augmentation with Together embeddings.
Methods:
- 
            get_embedding–Retrieve the embedding for given texts using Together API. 
- 
            search–Search an encoded query into vector database. 
Source code in src/rago/augmented/base.py
                    | 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 |  | 
    Retrieve the embedding for given texts using Together API.
Source code in src/rago/augmented/together.py
              | 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 |  | 
    Search an encoded query into vector database.
Source code in src/rago/augmented/together.py
              | 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 |  |